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Preface

This thesis represents the result of a ten month inves-
tigation of a second order technique for finding the optimum
controls to be used by an aircraft evading an air-to-air heat
seeking missile, The approach involves the application of
optimal control theory utilizing a Differential Dynamic Pro-
gramming Model to determine the optimum controls.

This thesis was sponsored by the Aeronautical Systems
Division as part of a study being conducted by the Air Force
for a better visual display to the pilot for evading an air-
to-air missile,

I have had great satisfaction in developing the algo-
rithm for this project. My only disappointment is that I
was unable to finish the algorithm in order to obtain the
desired results; however, I do feel that I have laid the
groundwork that could lead to a worthwhile second order
technique.

I wish to sincerely thank my thesis advisor, Major James
Funk, for his assistance and guidance during this project., I
would also like to thank my sponsor, Mr., Mike Breza, for his
helpful suggestions,

I dedicate this thesis to my wife, Sharon, and my chil-
dren, Todd and Kristi, who gave me encouragement and under-

standing, and exercised an incredible amount of patience,

Robert Smith
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AFIT/GA/EE/77 -5
Abstract

The purpose of the study is to formulate a method to
determine the control strategies that maximize the probabil-
ity of survival for an evading aircraft. This is equivalent
to minimizing the probability of kill for the attacking air-
to-air missile. The controls of the evading aircraft consist
of the commanded angle of attack, bank angle, and the com-
manded coefficient of tarust. The missile model developed
is a typical air-to-air infrared missile using preportional
navigation steering. The probability of kill is modeled as
ellipsoidal iso-cost surfaces with a cost value that decays
exponentially as the ellispoid size increases. The flatten-
ing and position of the ellipsoid centroid account for the
shape, orientation and vulnerability of the aircraft. The
problem terminates when the line-of-sight from the missile to
the target aligns with the suryace of the missile‘'s fuzing
cone. The algorithm developed employs a second order dif-
ferential dynamic programming model for optimizing the con-

trols of the evading aircraft,
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OPTIMAL MISSILE EVASION

I. Introduction

Purpose of the Study

With the newer fighter aircraft and fire control system
a problem exists for both at cking and evading aircraft. A
method of determining and lisplaying real time probability of
kill (Pk) to the pilot of the attacking aircraft using an air-
to-air missile is very desirable. On the other hand, the ef-
fectiveness of missiles against aircraft has made it extremely
desirable to provide the pursued pilot with aids for evading
missiles. This study will be concerned with the latter of
these twc problems, that is the problem associated with the
e+ 1ing aircraft.
The evasion problem is a two step process consisting of:
1. Determining the optimum control strategies to
be used by the evading pilot.
2. Providing on-board computation and display of
cues or solutions for the pilot,
This study represents the first step in that process, that is
determining the optimum controls to be used by the evading

pilot,

Background

The maximum and minimum effective ranges of air-to-air




missiles are functions of attacker state, target state, and
performance characteristics of both vehicles, Operational
experience has demonstrated that pilots have difficulty in
accurately estimating valid launch conditions during an en-
counter. Consequently, effective employment of air-to-air
missiles requires two distinct functions: 1) an accurate
missile launch envelope computation performed in an airborne
computer, and 2) display of appropriate parameters to the
attacking pilot so that he can recognize and take advantage
of valid launch opportunities,

The missile-launch envelope considerations are really
beyond the scope of this study, which concentrates on eva-
sion, However, the solutions to the evasion problem could
be used as a basis to determine launch envelopes. It is
still & sizeable step to solve and process the necessary
solution data in order to obtain ucable probab:rlity of kill
information,

Present airborne digital computers, cuch as in the F-15,
have made it practical to develop and to implement evading
strategy computations and to display these parameters to the
pilot. Thus this study iz concerned with the development of
improved strategies tc be used by an evading target; solu-

tions that consider more informat‘on than past methods,

Scope

The state variable equations are simplifiad where ever
possible without sacrificing any significant realism, There

is not as much freedom of motion as in the actual case due %o




( the assumption of coordinated turns by the aircraft.
The set of controls were chosen such that the evading

aircraft has flexibility in controls and is still realistic.

The }erminal cost function ccrresponds generally to a
detailed simulation of the end game which incorporates the
shape, orientation and vulnerability of the aircraft. Indi-

vidual component wvulnerabilities of a particular aircraft are

not considered, only the general characteristics of a typical
aircraft,

The second order differential dynamic programming algo-
rithm was selected for evaluation in solving this problem.
This choice was based on the high degre2 of nonlinearity of
the state equations, and convergence difficulties with a

§ first order algorithm. The algorithm was adapted to this
problem using unspecified final time.

This report will be limited to an approach for obtain-
ing the following information:

1. The trajectory of the missile.
2. The optimum trajectory of the evading target.
3. The minimum P, of the missile,
L, The optimum controls used by the evading air-
craft.
The information obtained is determined from a specific set of

launch conditions.

Assumptions

Certain assumptions can be made to reduce *he complexity

of the problem without significantly affecting the character




of the solution, They are as follows:

1. Rigid body dynamic models for dboth ciie missile

and the evading target.
(2. The yaw angle is assumed negligible.
3. Por the evader, the angle of attack and thrust
respor..¢3 to respective commands ars modeled
a8 linear first order systems with appropriate

time coratants,

4, The bank-cryle iine responses are assumed rap-
.d enoush to neglect any time delay in the re-
sponse.

$. The miseile furing cone angle is fixed, as is
the fu:i:y delay time,

¢. The duasi-y 7 tne atmosphere as a function of
altitude is ziven by

o= ooe'z/zo

where .

Py = 0023769 slugs/ft’
24 = 23800 f+¢
Z = the altitude above the earth's sur-

face,

General Approach

The material 1s presented in the following order. PFirst
the 9quations of motion for both the missile and evading air-

craft are derived. The proportional navigation steering is




then developed along with the computed acceleration for the
migssile. The state equations for the dynamic model are next
outlined. This is followed by the derivation of the cost
function derived from the probability of kill geometry. Next
the terminal constraint geometry is obtained. The required
equations for the differential dynamic programming algorithm
(Ref 1:47) are outlined. Finally, the computational proce-
dure used for the algorithm is discussed, followed by results

and conclusions,




II. The State Equations

General Description

The continuous-time dynamic system modeled for this pro-
gram is described by the following set of nonlinear ordinary
differential equationsy

o

X (1)

o

X, = £0X) 1 X(%,)

vhere the subscripts T and m denote target states and miesile
states respectively, The performance of the system is meas-

ured by minimization of a terminal cost function given as:
p. = oK (te)AX(ty) (2)
k
subject to the terminal constraint of the form:
(X (50) X (£5)) = 0 (3)

where the final time tf is given implicitly,

Defining the State Vector

The state vector for this optimal missile evasion prob-
lem includes the distance components between the target and
missile, the velocity of hoth target and missile, the heading
of target and missile, the flight path angle of target and
missile, the angle of attack of the target, and the coeffi-

clent of thrust of the target, In standard notation the

I
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gstate vector is defined as:

Xy - x;‘ xlm1

Tn - Yp X2
Z, Xy
2 X,
v, X,

X - I I ()
ll!m X7
Uy Xg
Ym Xg
Yo X10
%p X1

The controls determined for this problem are the com-
manded angle of attack of the target, the bank angle of the
target, and the commanded coefficient of thrust of the tar-

get., In vector form the controls are designated as:

o u
Tc 1 6
u = BT = uz (5) ‘
CTC u3
e .

where the subscript ¢ denotes commands,

Derivation of Force Equations

Both missile and evading aircraft are modeled as rigid
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bodies with their velocity vectors expressed in an inertial

{
A

reference frame (ijk) as depicted in Fig. 1.

Fig, 1. Velocity Vector in Inertial Frame

The velocity axis frame is designated as €, Ew, EY. The

velocity of the center of mass in the velocity axis system is

V=ve (6)

transformation into the inertial reference frame yields

5.
"

Veos(y) sin(y)
Y = Veos(y) cos{{) (7)
2 = Vsin(y)

where X and Y are horizontal position coordinates, 2 is alti-

tude, V is speed, y is the flight path angle and § is the

T4 rr——— .

oo o




heading angle with respect to the Y axis,

In order to obtain the accelerations of each vehicle,
the derivative of the velocity in the uoving frame must be
taken,

V= Ve, + Ve, (8)

and recalling that

XY
e

=B x8 (9)

v
where the angular rate u is given as
6 = ¥8y - U8, (10)

and where

e, = coa(y)eY + sin(y)ev (11)

therefore, combining Eqs (9), (10), and (11) and substituting
into Eq (8) yields

¥ = Ve, + VyeY + Vwcoa(y)ew (12)

The acceleration of the body times the mass of the tody is

equal to the sum of the external forces, or
n? = ¥ (13)

where F is composed of thrust, 1ift, drag, and gravity. A
more detailed representation of the velocity axis coordinate

system with the forces actiag on the vehicle is shown in




.

{ Fig. 2 and Fig. 3.

e

a=angle of
attack
y D=drag
Chord Line g=gravity
e I=1lift

v
. v T=thrust

Fig. 2., Velocity Axis Coordinate System
With Angle of Attack

L B=bank angle

o

[ 18
<=

Fig. 3. Velocity Axis Coordinate System
With Bank Angle

10




P Referring to Fig. 2 and Fig. 3 the following force components

~ are obtained:
Drag = -D &,
¥ Ohrust = T cos(a)é, + T si.n(oc)’éY
Lift =L cos(s)'éY + L sin(8)3¢
Gravity = -g cos(y)’e’Y - & sin(y)e, (14)
where

1/2 o v¥ s [Cd, + K(CL, a)?]
1/2p V¥ s 0L, « (15)

Combining Eqs (12) through (15) the following acceleration

terms are obtained in the inertial axis coordinate system:

(T cos(a) - 1/2p S Vz(Cd° + K(CLOL a)z))/h

VY =
- ¢ sin(y)
Y = 1/2 p S V(CL, a) cos(8)/m + 1_%5;3_(31
- g cos(y)/V
‘i’ =1/2p 8 V(CLQ o) sin(g)/m cos(y) (16) : ‘

Required Aerodynamic Acceleration of the Missile

Proportional navigation provides a rate of change of g
the missile heading directly proportional to the rate of rota- f
tion of the line-of-sight from the missile to the target
(providing the rates are within missile performance limita- i

tions). The line-of-sight rate from the missile to the

£ S
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target is defined as

g, = ——p=F (17)

where r? = r + r and r is the relative distance between the

missile and target, therefore:

£= (Xp - XTI+ (Y - Y))T + (29 - 2)E (28)

and V.. is the relative velocity between the missile and tar-

get, therefore:

V. = (Vq coslyy) sin(yq) - Vp cos(y,) sin(y,))I

+

(Vg cos(yT) cos(wT) ~ Vo coelyy) cos(wm))3

+

(Vo sin(yq) - Vy sin(ym))i (19)

The desired turn rate for the missile ig then equal to a pro-
portional navigation constant (n) times the line-of-sight
rate, or the desired turn rate is n £,.. For a typical air-
to-air missile n is in the range of 2 to 4; and for this
problem n is set equal to 3. The computed acceleration of

the missile, defined as ay is then given as;

8, =n L. x Vm (20)

In order to determine the required aerodynamic acceleration
of the missile, designated as 2, the effect of gravity must
be incorporated. Therefore, combining Eq (20) with the ef-

fect of gravity the required aerodynamic acceleration becomes




—

- &, (21)

where a  is the required aerodynamic acceleration and &, is
the component of gravity normal to the velocity of the mis-
sile. a, is the aerodynamic acceleration which the vehicle
should produce in order. to obtain the proper normal accelera-
tion in the presence of gravity. Referring to Fig. 4, grav-
ity in the velocity frame system is given as:

velocity = -g sin(y)e. - g cos e + Qe 22
& Yelooity g sin(y)e, - g cos(y) e, " (22)

L2}

Fig. 4. Determination of Gravity Components
in Velocity Reference Frame
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In the required aerodynamic acceleration formula, the
effective component of gravity is that component which is
normal to the velocity vector; or from Eq (22) effective

component of gravity becomes:

g velocity = -g cos(y)é (23)
frame ¥
effective

Referring to Fig. 1, transformation from the wvelocity

coordinate system to the inertial coordinate system is given

by
.eq: -l 0 0 i Hcos(\b) ~-sin(y) 0'-1 ‘i‘
e.| =10 cos(y) sin(y) sin(y) cos(y) ©
e 0 -sin(y) cos(y) 0 0 1l k
Y] L -4 L - L
which simplifies to:
- - —— ﬂ P.T
ew cos(y{) -sin(y) 0 i
el =1 cos(y) sin(y) cos(y) cos(y) sin(y) 3 (24)
e, -sin(y) sin(y) -sin(y) cos(y) cos(y) k
L - e L by ood

Combining Eqs (23) and (24) the effective component of gravi-

ty in the inertial coordinate system then becomes:

g %nertial =gy~ 8 cos(y) sin(y) sin(w)I
rame

effective + g cos(y) sin(y) cos(¢)3

[}

g cos(y)k (25)

Therefore, Bq (25) along with the computed acceleration of
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the missile (Eq 20) determines the required aerodynamic accel-

eration of the missile.

Angle of Attack of the Migsile
<
A detailed representation of the forces acting on the

missile is deplcted in Fig., 2, Equating forces and noting
that the thrust vector T acts along the vehicle axis of sym-
metry, the force normal to the flight path is given as:

P

normal = ® 8, = Lift + T sin(a) (26)

Assuming that the angle of attack remains small so that sin(a)
spproximately equals a, and substituting in for 1lift, Eq (15),
the force normal to the flight path becomes:

m%=1/2pvzsCLaa+Ta (27)

Solving Eq (27) for the angle of attack of the missile
Yields

2 ( )
28
1/20 V¢ SCL_a + T

amz

Bank Angle of the Missile
In order to determine the bank angle of the missile,

refer to Fig. 5 for a schematic of the bank angle in the
velocity coordinate system. The missile bank angle, Bt is
the angle between the unit vector 3? and the vector U, where
ﬁ‘ is the unit vector along the direction of the required
serodynamic acceleration a. Using the law of cosinea, the

15
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Fig. 5. Determination of Missile Bank Angle

bank angle is then determined by:

-’

By =+ cos™ (B« §Hy) (29)

where the unit vector ﬁa is determined by:

> _ &
u, = Té-J (30)

The third component of Eq (24) gives 37

é, = -sin(y) sin()i - sin(y) cos(y)j + cos(y)k  (31)

Referring to Fig. 5 and Eq (29), the following stipulations
are made on the bank angle:
1, 1If 3¢ . Ga > 0 then B, is between 0 and 180

degrees,

16




2; Ifsw’a

a < 0 then B is between 180 and 360

o~~~

degrees,

where the unit vector Ew is given as:

3W = cos(y)Y - sin(y)] (32)

In other words, the positive sign of Bp i8 used when condi-
tion 1. is satisfied, and the negative sign of Bm is used

when condition 2, is satisfied.

Defining the Nonlinear Differential State Equations

The velocity equations represented by Eq (7) and the
acceleration equations represented by Eq (16) produce the
following set of nonlinear ordinary differential state equa-

tions used in this program;

+ Kp(CL, ap)®))/my - g sin(yy)

é im - iT = Vp cos(ym) sin(y,) -~ Vo cos(yT) sin($T)
Z im - iT = Vp cos(yy) cos(yy) - Vp cos(yg) cos(yg)
; ém = V¥, sin(y,)

} éT = Vp sin(yg)

\.Im = (T, cos(ay) - 1/2 p sz Sp(Clyp

<
"

2
7 1/2 op Vi ST(CT cos(aT) - (CdoT

1 + Kp(OL o a)?))/ny - & sin(yy)

Py = 1/2 Om Sm Vo Tem % sin(Bm)/mm cos(yy,)

17




b = 1/2 Pp Sp Vg Clyp dp sin(BT)/mT cos(yT)

Yy = 1/2 ®m Sm Vm Clum %m cos(sm)/mm é
+ T sin(um)/mm v, - & cos(y. )/V, |
Yp = 1/2 P ST VT(CLuT cos(aT)aT/mT |
.
+ Cq sin(aT)/mT) - & cos(yT)/VT é
ap = (ag - ap)/7p
c

Cp = (Cp - Cp)/ T (33)

The subscripts T and m denote the target and missile parame-

ters respectively, Tp is the time constant for the angle of

attack response, and T 1s the time constant for the thrust !

response of the target, an and B have previously been de-

fined by Eqs (28) and (29), apn + Bpy 2nd Cp are the control
¢ ¢

variables defined by Eq (5), and where o, and pp are defined

PUTVRPR porvy

byt

pm = poe("zm/zo)

og = pge{"E1/%o) (34)




I1II. Terminal Cost

The objective of the terminal cost function is to make

7% the model correspond to detailed simulation of the end game
which incorporates the shape, orientation and vulnerability
of the alrcraft. ITndividual vulnerability of a particular

aircraft is not considered, but only the generic character.

The Py ellipsoid parameters were chosen to fit detailed sim-

ulation results reasonadbly well, The general form of the

terminal cost is given by:

T
Pk = e(“& (tf)Qx_(tf)) (2)

As previously stated, this optimization problem requires

the minimization o1 this terminal cost. The terminal cost is

a convex function describea by ellipsnidal constant cost sur-

faces centered about a reference point near or c¢n the air-
craft, Each surface represents a constant value for the
probability of kill for a particular missile, The probabil-
ity of kill (Pk) values decrease exponentially with increas-
ing concentric ellipsoid size. The ellipsoids can be con-
gidered fixed with respect to the target vehicle - moving and
rotating with it, The P, for each migsile approach path is
a function of the crossing aspect angles and the separation
distance between the missile and target paths, as well as the
relative velocity and altitude,

The Py for each flight is evaluated by determining the

P %
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separation distance of the missile flight line projection
from the target at the terminal time. The separation dis-
tance of the missile flight line projection is designated r
in Pig., 6, and will be more precisgely defined in the following

paragraphs,
Separation / iso-P, Surface
Distance - r Contours ;7
=7
/ =
-—-"——‘. /
/\ SN~— — ?
Missile Flight Target Position
\\\\~ Line Projection at Detonation

P - Line-of-Sight

Missile Position
at Fuzing

Fig. 6. Terminal Cost Geometry

20




Designating the fuzing time of the missile as tf, which
is the time when the target intercepts the missile fuzing
cone and is the beginning of the missile delay interval, Te,
defined as the period of time from fuzing to detonation. The
target position at detonation, designated as the origin 0,

can be determined by
0 = Xp(tp) + Vo(te) « Tp (35)

where X, is the target position at tf and V., is the target

T T
velocity at tf, in the inertial coordinate system. The sep-
aration distance r is the offset distance of the missile

flight path projection from the origin., The vector P, which
is the line-of-sight vector from the missile at fuzing to the

target at detonation is then given by:

where Km(tf) is the position of the missile at the fuzing

time., Substituting Eq (35) into Eq (36) yields
P = ?—{-'n(.tf) - }—{-T(tf) - Y-T(tf) ' Tf (37)

The vector r, which is the vector from the origin per-
pendicular to the missile flight line projection, is a func-

tion of P,
r=(uxP)xu (38)

which is equivalent to:




s

Designating the fuzing time of the missile as tf, which
is the time when the target intercepts the missile fuzing
cone and is the beginning of the missile delay interval, Tf,
defined as the period of time from fuzing to detonation, The
target position at detonation, designated as the origin 0,

can be determined by

0 = Xplte) + Vplty) « Tp (35)

where X, is the target position at %, and Vp is the target
velocity at tf, in the inertial coordinate system. The sep-
aration distance r is the offset distance of the missile
flight path projection from the origin. The vector P, which
is the line-of-sight vector from the missile at fuzing to the

target at detonation is then given by:

where zm(tf) is the position of the missile at the fuzing
time, Substituting Eq (35) into Eq (36) yields

P o= X (tp) - Xn(tg) = Vol(te) « Tp (37)

The vector r, which is the vector from the origin per-
pendicular to the missile flight line projection, is a func-

tion of P,
r=(uxp) xu (38)

which is equivalent to:

21
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r=E - (

I*d

culu (39)

where u is the missile unit velocity vector determined by the

following:
¢
Vv, (%
u-= ;::t:; (40)
Combining Eqs (37), (39), and (40) yields:
Ts Ak - Ty Yy - (KN Yy
* 0 Y)Yy Ty ()

where all values are determined at the fuzing time tf, and
where . designates the vector dot product.
The ellipsoidal equation for iso - Pk contours in matrix

form is:

RS = T F

.
L]

(42)

where r, in Eq (41), can be expressed in the inertial coordi-
nate system., F is most easily defined in the target coordi-

nate system

B ]
2
1/'dx 0 0
Pp =| O 1/’dy2 0 (43)
0 0 l/dz2
b oound

where F is the scaling matrix determined to approximate the
P, data of detailed vulnerability studies by the ellipsoid




it

b b b e )

surfeces. In order to express F in the inertial coordinate

system, the following similarity transformation must be made:

F = c% F_ C (4h)

I
T T

Cé.is the transformation matrix from the inertial coordinate

system to the target coordinate system; and C% transforms

from target to inertial coordinates. In determining C% the
order of rotation is through the heading angle (wT), fol-
lowed by flight path angle (YT)' and then the bank angle

(BT). and finally through the angle of attack (aT):

-1 0 0 ] -cos(BT) 0 -sin(BT;-
oz = |0 cos(ap) sin(ag)| - o 1 0 :
0 -sin(aT) cos(aT) sin(BT) 0 cos(BT)
N - T ~ (4s5)
1 0 0 cos(Yp) -sin(yq) 0
0 cos(yT) sin(yT) . sin(wT) cos(wT) 0
l-'0 -sin(y,r) COS(YT)-] i 0 0 l-

Therefore, the transformation from the target coordinate

system to the inertial coordinate system is given by:
T _ I\T

Finally, the terminal cost, defined as F(X(tf); tf) is
given by:

F(X(t,)3 to) = -R?
£ } F/ = e (47)




where RZ is defined by Eq (42).

The type missile used for this simulation is an air-to-
air heat seeking missile, The tail of the aircraft was chosen
as the aip point (or origin) for the target. Since the mis-
sile is guided towards the tail of the evading aircraft, kill
probabilities are higher if the detonation is forward rather
than behind the target aim point. A bias term is used to
shift the center ¢f the ellipsoids forward to account for
more probable fuzing forward of the aim point. The amount
of shift is designated as b, then the vector from the ellip-

goid center to the tip of the r vector is

D=r-b (48)

where r is the "closest approach point" of the projected mis-
sile flight line projection to the aim point (the Pk analysis
was based on r as a parameter). The missile used for this

algorithm has a shift vector b of:

b, =0
b= 6 £t
b

y
g = 2Tt (49)

and, therefore, the ellipsoid equation for the iso-Pk con-

tours in matrix form becomes:

2

R° = DT F D (50)

For the missile used, the weighting matrix, FT' in the

target coordinate system is:

2k
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Fo = Y

(51)

Therefore, the terminal cost for the missile used in this

program becomes:

F(X(tf)i tf) = €
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IV. Terminal Constraint

A typical air-to-air missile has a fuzing cone angle
(FCA) of approximately 60 degrees., The proportional naviga-
tion steering attempts to maneuver the missile so that the
target is constrained inside the fuzing cone angle at all
times., During the terminal portion of the flight, as the
missile approaches the target, practical limitations on mis-
sile maneuvering will allow the target to reach the fuzing
cone angle. At the time when the line-of-sight from the mis-
slle to the target lies on the missile fuzing cone the missile
‘fuzing delay is initiated, and, following 2 preset delay time,
detonation is programmed to occur, The fuzing cone angle and
delay times are normally chosen to give "good" fragment pat-
terns,

The terminal constraint for this problem is, therefore,
when the line~of-sight from the missile to the target equals
the fuzing cone angle. Refer to Fig., 7 for a schematic of the
terminal constraint,

Let A equal the unit missile axis vector and S equal
the line-of-sight (L0S) vector from the missile to the target:;
therefore, when the LOS lies on the edge of the fuzing cone

angle then
S x A= [S| |Al sin(FCA) (53)

where |A| is equal to 1, S which is the LOS vector from the
missile to the target is then equal to
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Fig. 7. Terminal Constraint Geometry
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The terminal constraint, designated as w(x(tf), tf). is then

given as:

B(x(t5), tp) = IS x AlZ -151% sin®(Foa) (55)

A which is the unit missile axis vector in ‘the missile coordi-

nate system is equal to

(56)

1>
"
-t

In order to obtain A in the inertial coordinate system the
transformation from the missile coordinates to the inertial
coordinate system must be made. The transformation from the
missile to the inertial coordinate system, A?, is of the same
form as the transformation matrix for the target AT, and re-

calling that

AT = (aD)T (57)

then A? becomes




3 0
A? =tl0 cos(am)

0 -sin(am)

0 cos(y,)

0 —Sin(ym)

FLC pa

-y

0

sin(am)

°°S(“m)d

0

sin(ym)

cos(8,,)

0

cos(Ym)J

sin(s,)

.cos(wm)
sin(f,)
0

q
0 -sin(am)

1 0

0 cos(sm)

-sin(yy) 0'1

cos({,) 0
0 1

(58)

ot

where the order of rotation is the angle of attack, then bank

angle, followed by flight path angle, and finally by a head-

ing change.

0
m
Ayt 1
0

Finally, A in the inertial coordinate system is

(59)

The terminal censtraint equation is then defined by Eq (55)

where S and A are defined by Eqs (54) and (59) respectively,

and FCA depends on the missile being used.

For the missile

used in this program the fuzing cone angle is 60 degrees.
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V. Differential Dynamic Programming Equations

The second order algorithm for fixed end point problems
with the final time (tf) given implicitly ig discussed in Ref
(1:38). Jke derivation of *he required equations will not be
given here, but the equations to be used for this particular
prodblem will be discussed.

Initially, a first order algorithm was considered for
use in this program; therefore, the following sample problem
was attempted with the first order method:

X, = X,

X2 = "xl - x13 + (60)

The rate of convergence on this nonlinear problem using the
first order method was very slow. The second order algorithm
was then attempted on the same problem with the rate of con-
vergence being greatly improved over that of the first order
method. The optimal missile evasion problem is quite nonlin-
ear and as previously outlined has a 12 dimensional state vec-
tors therefore, the second order algorithm was selected even
though of the disadvantage of taking a iarge number of second
order derivatives,

The second order method consists of two phases; the
first phase, optimization phase, uses backward integra-
tion of the costate equations to determine the sensitiv-
jties of the cost function for proper adjustment of the
controls. Throughout this phase the value of the termi-

nal constraint functiua is allowed to wander., The second
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phase, which is designated as the restoration phase, starts with

controls obtained in the optimigation phase and then attempts
to restore the constraint.
In ggneral. the function to be minimized can be given

in the general form of:
e
IEor B g %) = [T LK, u, t)dt
%

+ POK(t)1 tg)

+ Bt ty) (61)

where the final time tf is given implicitly. For this par-
ticular provlem, the coutrols are indirectly constrained by

the integral cost term

L(X, u, t) = 1/2(RA+(ap )% + RB*(8,)% + RC-(Cy )?)  (62)
o]

)
Tc
where RA, RB, and RC, the weights put on the controls, are

selected as the inverse of the maximum vaiue expected for

that control., For this protlem the values are

RA = 10
RB = .1
RC = 73 (63)

F(;(tf), tf). the terminal cost, is defined by Eq (52),
w(g(tf, tf). the terminal constraint, is defined by Eq (55),
b is the time invariant Lagrange multiplier, and the state

variable differ¢ntial equations are of the form X = £(X, u, t).
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The nececsary sensitivity equations to be integrated in order

to minimize Eq (61) are

¥ -a = H - H(X, W, Vx; t) %
;% -Vy = Hy + V,, (f - £(X, U1 t)) !
- -V = (f,+ £ g )TV |
xb X u "l xb b
k
-V = (f, + £, By)" V |
xtf X u "l xtf Eg
y T 1.7 E
“Vot, © “Vxv fufuu o fu Vxs |,
f f I
Y -y T -1 .19 {7
oo " Vxo fu Huw T fu Vxo ?
. _ T 9‘;
“Vex T Hex * T Vax v Vax I E?
T T, -1 T I3
‘(Hux * £y vxx) Huu (Hux * vxx) if
y T -1, T “
-y = &V f H £ Vv
tftf xtf v uu u xtf (64)
where all quantities are evaluated at X, J, ff and u* unless
otherwise specified. The terms designated with the bar above

indicate the values along the nominal trajectory for which
that variable is used, The optimized control for the next
iteration is given by

u(t) = u*(t) + 8y(t) dx(t) + B,(t) db

i T R

! + B5(%) aty (65)

where Bl(t). Bz(t) and sB(t) are given as:

LSl

-H

T
+ fu Vxx)

-1
al(t) uy (Rux

Bo(t)

n

=1 T
'Huu fu vxb
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b
u xtf

BB(t) = ”H““— (66)

The functions with the subscripts indicate the partial of
that funcfion with respect to that subscript. Note that db
and dtf are zero except during the restoration phase, and the
third, fourth, fifth, sixth, and eighth equations of (64) are
used only during the restoration phase,

The Hamiltonian, H, is defined as
T
H=1L + Vx by (67)
The necessary condition for an optimum control, u*. is that

Hu = 0, Taking the partial derivative of the Hamiltonian
with respect to u ylelds the following u*:

ul’ = -Vll/TP . RA ‘
where V11 is defined as the eleventh component of the costate
equation in the Gx equation (64), etc, Since u, is an argu-

ment of the sin and cos, the u2* equation is transcendental,

A root finding subroutine is used to solve for uz* from the

followling transcendental equation:
RB(u,*) + cos(uy*)(Vg 1/2 poe'(zT/zo) S
* Vp CLyq ap/mp cos(vg)) + sin(uy*)
¢ (~Vy 1/2 pge”B1/%0) sy Vg Clyq ag/mg) = O (69)

The boundary conditions required for the dif-
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ferential equations (64) are:

a(tf) = 0

v, =F +U. %
vxb = wa

vxtf = Hy + Vx
Vbtf =y I

Vbb = 0

Viex = Frx * Dl

Vet " i £+ <8 Vi £> (70)

whereA( :>signifies the inner product, and b is the nominal
Lagrange multiplier. The computationaul procedure for the

program is outlined in the next chapter,
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VI. Computational Procedure

In order to understand more clearly the computational
procedure used for the optimal missile evasion differential
dynamic programming model a synopsis of the program will now
be discussed, As was sStated earlier in this thesis the main
concern of this program is to determine the minimum Pk of the
missile, as well as the optimum controls used by the aircraft.
The Pk obtained is the minimum for a particular launch condi-

tion when the evading target uses optimum controls: angle of

attack, bank angle, and coefficient of thrust. In the real

world situation the Pk' for the same launch condition, would
be equal to or greater than that Pk obtained by this program
depending on how skillful the evading target pilot was.

For this program the terminal condition is known, that

is, the stopping criteria occurs when the LOS from the mis-

sile to the target intercepts the missile's fuzing cone as

discussed in Chapter IV, The duration over which the control
is to be applied, however. is not fixed, The interval [to.
tf] is, therefore, not specified explicitly. An initial time
interval of one secend was selected to test this program. A
nominal control, U, is then loaded into an array for the
three controls, Each control is selected as a constant
throughout the interval using a step size of .l seconds,

with the nominal angle of attack, ﬁl, of zero degrees, the
nominal bank angle, E?’ of zero degrees, and the nominal

coefficient of thrust, EB' of .025, The nominal value of
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the coefficienv of thrust is based upon a 55,000 1b airplane
at 20,000 ft using military power (7000 1bs of thrust).

A brief outline of the method used in the algorithm is
depicted in Fig. 8; and a more detailed analysis of the pro-

gram is described in steps 1 through 6,

Step 1 - Backward Integration of the State Equations Using

Nominal Control

Since it is known approximately where the terminal con-
ditions occur, these terminal conditions are used to initial-
ize the state equations in order to integrate the states back-
wards in time the one second interval., Referring to Fig. 9
for a geometrical interpretation of the terminal conditions
selected for this problem, the initialization of the state

equations for the backwards integration are:

Xp - Xp = 5 ft
Ym - YT = "80 66 ft
2, = 20,000 £t
Zp = 20,000 £t
v, = 1866.L fi/sec
(71)
Vp = 829.5 ft/sec
¥, = 30 deg
wT = 0 deg
Yp 0 deg
Yp = 0 deg
ap = 0 deg
Cp = ,025
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The state equations are then integrated backward from tf to
to using the nominal controls and using the above starting
conditions. The backward integration is stopped at to where
values foy the states are obtained and designated as gI(to)

Step 2 - Forward Integration of the State Equations

The state equations are integrated from to to t, using
the same nominal controls and using the initial conditions
;_I(to) as determined from step 1. During this forward inte-

gration the nominal cost is determined using

Jnom = F(X(tf)t tf) +b W(X(tf); tf)

%
+ 1/2 j‘f (RA-(ul)2+RB-(u2)2+RC-(u3)2)dt (72)

s

where F(x(tf); tf) is the terminal cost as discussed in Chap-
ter III, w(x(tf); tf) is the terminal constraint as discussed
in Chapter IV and b is the nominal Lagrange multiplier which -
was set equal to 1. The procedure used for evaluating the
terminal cost and constraint is discussed in step 3., The

states are then evaluated at t, and designated as X(t,).

Step 3 - Backward Integration with Unconstrained Terminal
Condition

The following set of differential equations are inte-

grated backwards from s to t,:

States i

A

4o




-l

- (73)

The starting conditions for integrating the above equations

backwards«ére
X = g(tf)
A =0
_ T
Vy =F o+ y, B
Vex = Fyx + D Uy (74)

The terminal conditions for the costate (§x) equations in-
volve taking the first partial derivative of the terminal
cost (Fx) and the terminal constraint (wx); while the termi-
nal co;ditions for the Qxx equations involve taking the second
partial derivative of the cost (Fxx) and constraint (wxx).
Both the terminal cost and terminal constraint are functions
of a large number of the states, states one through eleven
for the terminal cost, and states one through ten for the
terminal constraint. Since both the first and second partial
derivatives of these functions are required, a large number
of terms are involved. Since high accuracy is not required
for the values used for the initialization of the differen-
tial Equations (74), the analytic solutions to the initiali-
zation of the &x and éxx equations will not be attempted.

The derivative Vy is approximated using divided differences

FP(X_ + aX;) ~ P(X_ - aX;)
o i 0 i _
in 2 v i=1,2, ...11

b1
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and

) U(X, + aXy) - F(X, - 8Xy)

]
Xy ZAXi

i=1, 2, ..,.10 (75)

where F is the numerical value of the first partial deriva-

th

i
tive of the terminal cost with respect to the 1™ state; and

wxi is the numerical value of the first partial derivative of

the terminal constraint with respect to the ith

state. The
nominal vector, X, is the value of the states at the final

time, 4X; is set equal to 1% of the value of that state at

the final time plus an epsilon., The epsilon is added in or-

der to provide a usable perturbation even when the nominal

value is small or zero. This prevents division by zero. The

particular values for the AX; are:
Axl = ,01 xl(tf) + 1 ft
aX, = .01 Xz(tf) + 1 ft
AXB = ,01 X3(tf) + 1 ft
Axu = ,01 Xu(tf) + 1 ft ;
AXg = .01 Xg(tp) + 1 ft/sec g
MXg = .01 Xg(tg) + 1 f£t/sec :
8X, = .01 X7(tf) + 1 degree L
8Xg = .01 Xs(tf) + 1 degree 3
AX9 = ,01 xg(tf) + 1/2 degree ;
8%yq = 01 Xlo(tf) + 1/2 degree
8Xq = .01 Xll(tf) + 1/2 degree (76)

Subroutine FFX calculates in. and subroutine FPX calculates

et

b2

— eyt -




i
The derivative Vox is approximated using
= P! - - AX. .
inxj [F{X, + 8X; + ij) F(X, - 8% + AXJ)
- F(X, + 8X; - ij) + F(X, - aXy - ij)] /
b axy b
for i £ j i=1,2, ...11
j = 1,2, oooll
and
F(X, + 8X;) - 2 F(X,) + F(X, - aX;)
Frex, = 3 (?7)
b AX4
for i = i=12, ...11
where inx- is the numerical value of the second partial de~
rivative of the terminal cost. ¢, , , the second partial de-

173
rivative of the terminal constraint, is computed in the same

3 are the same values as that previously
determined in Eq (76). Subroutine FFXX calculates Py, and

i

way. The Axi and AX

subroutine FPXX calculates wxix .
As previously stated in step 2, at the end of the forward
integration the terminal cost and terminal constraint values
are required. For the terminal cost, subroutine FFXX is used
to calculate this value, The terminal cost is calculated in
that portion of the routine where zero displacement of the
states is required. The terminal constraint is calculated by

subroutine FPXX using the same procedures,
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Returning to the main program with the boundary condi-
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: tions, Equations (73) are integrated backward from te to t,.
1 Subroutine F is used for this backward integration. During

this backward integration H is minimized with respect to u
to obtain«g*. As previously stated, the equation for u, is
transcendental, therefore, subroutine F determines u2* from
the transcendental equation at each step. The solution for
u,* is obtained by iteration using the root finding approxi-

mation

f(u, ) + £'(u, ) u, & 0 (78)
0 0

or solving for suy

¢ £(u, )

- - 0
6u2 = 7 uz
(s

if 1£'Cu, )| >0 (79)
0

where 6u, is the change in u, from one iteration to the next

and f(u2 ) is the transcendental function evaluated at Uy .
° o

f’(uz ) is the derivative with respect to u, evaluated at
o
u, . The new updated estimate is then
o

u, + su, (80)
()
Thig iterative type procedure continues until the solution
converges (i.e,, su, becomes less than a specified tolerance),
If lf'(u2 )| approximately equals zero then the second deriv-
()

E C ative has to be taken and éu, becomes

AR L A S oL
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, 2 f(uz )
6112 = + - _ET(EZ'QT (81)

(o]

where the proper sign is chosen such that quo + auzl is min-
imized,

The Qx and Qxx equations are integrated backwards usirg
the values of u*, The A equation is integrated backward
using the difference between u* and Yominal® A test param-
eter value of ,0005 was preselected for A. Throughout the
entire backward integration the values of Bl(t), which is
defined by Eq (66), are stored. The time is noted when A
exceeds the preset value of .0005, and is designated as

NEFF(2), the time of an "effective" change in A,

Step 4 - Forward Integration of State Equations Using Improved

Control
The state equations are now integrated forward again
from to to tf maintaining the same initial conditions but

using the new control

W, = U* o+ B (t) dx(t) (82)

where Bl(t) was calculated in step 3 and dx(t) is the differ-
ence between the states using the nominal control and the
states using the ey COntrol designated Xn. During the
first iteration, dx(t,) equals zero and then dx is calcu-
lated for the remaining steps to tf. Throughout the entire

forward integration the new cost, desgignated as J is

gtar’
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calculated, includes the integral cost, the terminal

Jstar
cost, and the terminal constraint penalty calculated the same
way ag in step 2; but all functions are evaluated using Yoew.
The requirement for a ru.tisfactory new control is that the
change in cost be greater thai. some constant times A(to).
Jacobson and Mayne Ref (1:125) suggest initially that the
ccnatant equal .5 therefore, the requirement for a valid

new control, Ynew is

Jnom = Jgtar 2 © A(to) (83)

If inequality (83) is satisfied then the Yoy CONtrol is
loaded into the YWominal control and then step 2 ls repeated.
If inequality (83) is not satisfied then a step size adjust-
ment method is required to prevent overstepping the region
of linearity, The step sigze adjustment method consists of
determining the position on the integration interval half
way between NEFF(2), which is the first point on the back-
ward integration wherc A exceeded ,0005, and to. This new
position is called MK in the main program, The Yoy COntrol
is then changed by the follow'ng method:

Ynew  Ynominal
on the interval from to to MK and then

Upew = U* + 8, (%) dx(t) (84)

on the Interval from MK to tf. Using the new control, step

Lo




l; is then repeated but now the change in states, dx(t), is
zero from t, to MK since the same control is used over that
interval, and on the interval from MK to tf, dx(t) is cal-
culated as before. Again the change in cost is evaluated

and the criteria for a valid new control is

J > C A(MK) (85)

nom - Jstar

The step size adjustment method criteria specifies that
the change in cost must be greater than a predetermined
value, If the criteria is not met, MK must be moved to-
ward the final time so the old control is used over more
of the total interval. This iterative type procedure is
continued until MK and NEFF(2) coincide, When this condi-
tion is satisfied then C is set equal to zero. When C is
set equal to zero, the most optimum trajectory has been found
using C equal to .5, The Woow control is then again loaded
into the YWominal control and step 2 is repeated., The new
criteria for a valid contrcl is that

J -dJd

nom gtar = © (86)

This is a more refined criteria in that as long as Jstar is
less than Jnom the control is valid, Again this iterative
type procedure is used until MK and NEFF(2) coincide. The
most optimum.;ontrol has been determined by treating the prob-

lem as a fio2e end point, that is the terminal constraint cri-

k7
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teria has not been satisfied,

store the terminal constraint condition, Eq (55).

Step 5 - Backward Integration with Conesirained Terminal

Conditiona

The next step will be to re-

The following set of differentlal equations are inte-

grated backwards from tf to t,:

States @ i

v
Spts

with the initial conditions of:

>4

Xn(t,)
T
Fyp + Uy 1)

xx * 3 U

L8

(87)




i

g, T
f x

Viot, iy £y + <?, Vo, f:> (88)

E The initial conditions for the éx' Vxx and Vb equations are

determined the same way as in gtep 3. The initial conditions

for the th

i

Q and Q
£ Pl b
subroutine STCST. During the backward integration using Ynew,

y  are calculated analytically by
f

Bz(t) and 83(t) are determined from ty to t, where B,(t) and
EB(t) are defined by:

Bz(t) = "Huum1 fuT vxb
BB(t) = 'Huu-l fuT thf (66)

The new control to be evaluated on the next forward in-

tegration is given by

u(t) = w., + Bo(%) db + 84(%) dtg (89)

where Ynew is defined in Eq (84) and where db and dt, are
given by

b -1

(90)

dt v v v
f tfb tftf te

All values are determined at to, therefore, db and dtf are
constants for a particular integration cycle., E is also a
constant for a particular integration cycle which initially

equals 1 as suggested in Ref (1:43). The quantity dtf is the

k9
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change in the final time of the trajectory; and for this
problem was limited to a maximum of 10% of the final time,
That is, the criteria for dtf is

a latel < .1 %5 (91)

where tf is the final time of the trajectory. If inequality
(91) is not satisfied then E is set to E/2 and then db and
dt, are re-evaluated by Eq (90). If inequality (91) is
satisfied then proceed on to step 6.

Step 6 - Forward Integration of State Equations Using Optimum
Control L

The control given by Eq (89) is designated as Yopt in
the program. The state equations are then integrated from

t, to t, using u The values of the states are determined

opt’
and the terminal Zonstraint is then calculated by using sub-
routine FPXX. The value of this optimum constraint is des-
ignated as PCOSTP, while the constraint evaluated in step 4
was designated as PCOSTN. In order %o determine if there has
been an improvement in the end point error the following cri-

teria must be satisfied:
e ]
|PCOSTN| > |PCOSTP| (92)

where again PCOSTN is the value of the terminal constraint
by using Yew? and PCOSTP is the value of the terminal con-

straint using u If inequality (92) is not satisfied then

opt’
set E to E/2 and return to Eq (90) where db and dte are re-

50
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evaluated, If inequality (92) is satisfied then the Yopt
control is loaded into the Y ominal control and step 3 is
repeated. The stopping criteria for this restoration phase

is when the terminal constraint satisfies

[B(X(te), t0)] < .005 (93)

The final values obtained by this program are the fol-
lowing:
1. The trajectory of the missile,
2. The optimum trajectory of the evading target,
3. The optimum controls used by the target and,
L, The value of the terminal cost, which is the
minimum Pk the missile would obtain for the |
initial conditions as outlined by Eq (71).
A detailed schematic of the differential dynamic algo-

rithm used for this program is illustrated in Fig. 10, Ap-

pendix A, |
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VII. Results

As previously stated this study attempted to determine
the optimal controls to be used by an aircraft evading an
air-to-air migsile; with the controls consisting of the angle
of attack, the bank angle, and the coefficient of thrust.

The state vector for this missile evasion problem included
the distance components between the target and missile, the
velocity of both target and missile, the heading of target
and missile, the flight path angle of target and missile, the
angle of attack of the target, and the coefficient of thrust
of the target. The performance of the system was measured by
the minimization of the terminal cost function, which was the
P, of the missile.

The objective of the terminal cost function was to make
the model correspond to detailed simulation of the end game
which incorporated the shape, orientation and vulnerability
of the aircraft, The individual vulnerability of a particular
aircraft was not considered, but only the generic character.
The Pk ellipsoid parameters were chosen to fit detailed sim-
ulation results reasonably well, Previous optimal missile
evasion investigations modeled the terminal cost function as
the magnitude of miss distance only and did not consider the
vulnerability of the aircraft as a function of the orienta-
tion geometry.

Due to the complexity of the algorithm for this optimi-

zation program and the imposed time limit, the desired optimal
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¢ solutions for this investigation were not obtained.
Prior to attempting this optimal missile evasion problem
the following system consisting of two states was solved using

both the first order and second order methods,

1= %,

with the terminal constraint consisting of

l!!(X(”vf): tf) = xl - zxz - 2 (91‘!')

and the integral cost consisting of

5
{ L= 1/2 f (%% + x,% + v)as (95)
0

Both the first order and second order techniques were
attempted in order to evaluate the feasidbility of using
either of these techniques for the optimal missile evasion
problem, which consists of a system with 12 state wvariables.
In this sample problem it was determined that the rate of
convergence using the first order technique was extremely
slow, Wiin this in mind it was determined that if the first
order method was attempted on the evasion problem then the
slow rate of convergence would make it extremely difficult
to obtain the many desired solutions, thus the second order

technique was selected as the best candidate method for this

program,
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The greatest disadvantage of using the second order tech-

nique is the high dimension of the system of differential

1 equations. For any optimization problem with an unspecified
final time, using the technique outlined in Ref (1l:46), the

following equations must be calculated:

H - H(X, 0, V3 %)

-a =
S, = H sV (f - £(X, T 1)
'6xb = (fy + Ty Bl)T Vxb
'thf = (£, + fu Bl)T vxtf
“thf = ’beT Tu Huubl fuT vxtf
'be =-beT fu Huu-l fuT Vb

4 'Qxx = Hex * fxT Vax * Vxx Tx

% ~(Hyy + fuT Vxx)T Huu-l(Hux * fuT Vaex)
'étftf = "thfT fu Huu~l fuT vxtf (64)

with the control determined by:

u(t) = u*(t) + Bl(t) dx(t) + sz(t) db

+ BB(t) dtf (65)

and where Bl’ 32' and 83 are calculated by:

T
-H + £ vxx)

Bl(t) uu“l (Hux

=1 .17
Bz(t) 'Huu fu vxb
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1 ( B3(t) = 'Huu-l fuT thf (66)

In Eq (64) the total number of differential equations to

be integrgsed exceeded 130 for this problem, The vxx equations
require the second partial derivatives of the Hamiltonian with
respect to the states, and several of these equations were in
excess of 1° lines of fortran computer coding.

In addition to the integration of the above equations,
the terminal conditions had to be computed for each equation,
These computations required the use of a numerical differ-
entiation technique as was outlined in Chapter VI. It should
be noted that this procedure requires a significant amount of
calculation in order to obtain the numerical derivatives for
these terminal condition vaiues. Along with these calcula-
tions, an iteration was required to solve the transcendental
equation for the optimizing control, as discussed in Chapter
VI,

When attempting to run this prog.-en on the computer the
s8ize of the program was such that the core memory allocation
requirement was in excess of 177,000 (octal) words., The cor-
responding compilation time for each run was one hundred
thirty-two seconds,

In order to reduce the execution time the initial flight
interval was limited to one second with the intention of in-
creasing the limit when the program was working properly.

The results to this peint indicate that the state equations

have been partially successful in both the backward and
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forward integration for the one second time interval. How-
ever, difficulty was encountered during the backward integra-
tion of the costate equations which determine the sensitivity
coefficients, The backward and forward integration of the
state equations plus the initial backward integration of the
costate equations required over fifty seconds execution time.

Due to the large memory requirement and the lengthy exe-
cution time, this program was placed near the bottom of pri-
orities in the central computer. Turn-around time for each
computer run varied between 2 and 3 days.

In addition to the slow computer turn-around time, there
exists within the program itself the inherent problem associ-
ated with debugging the complex program code. That is, there
exists some probability of programming errors even though
every attempt was made to limit such a possibility. The com-
plexity of the equations used in this program definitely con-
tributes to the possibility of a mistake in derivation of the
equations.

This investigation demonstrates the desirability of find-
ing an alternate method of generating the equations required
for the second order optimization technique, The alternate
method should not require the lengthy derivation of partial
derivative equations nor the large amount of memory required
to compute them,

A procedure that satisfies these requirements is a higher
order computer language designated PROSE, Ref (2:1), It eval-

uates automatically partial derivatives as a by-product of
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the computations in the model.

The resulting derivative values

are exact to the precision of the computer, as though they

had been evaluated by formula derivation and evaluation.

This derivative evaluation by PROSE would eliminate the

lengthy, time consuming, and possibly erroneous derivation of

the partial derivatives,
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VIXI. Conclusions and Recommendations

The method of solution was one of the primary concerns
in this study., The rate of convergence using a first order
optimization technique for solutions to this missile evasion
problem was estimated to be extremely slow and, therefore,
unwcceptable, The second order technique usged for this pro-
gram also has disadvantages; the two primary ones are long
computer execution times and the large number of equations
that had to be derived. The following procedures are recom-
mended as additional efforts in solution methodclogy:

1, Simplify the problem formulation as follows:

a, Use an altitude difference between the
missile and target as one state instead
of the state for each missile altitude
and target altitude.

b. Assume the time responses for the angile
of attack of the target and the coef-
ficient of thrust of the target are
rapid enough to neglect any time delay
in the response.

with the above simplifications incorporated

into the program the state vector would be

reduced to nine states,
2. Complete the second order optimization routine
as derived in this thesis in order to obtain

the optimum control strategies,
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Investigate use of the PROSE programming lan-
guage for solving the evasion problem and ob-
taining the optimum control strategies.
Compare the results obtained with the optimi-
zation program derived for this thesis to

those obtained with PROSE.
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Appendix A

Detalled Schematic of the Program

A detailed flow chart of steps 1 through 6 used in the
program is illustrated in Fig. 10. The initial values of
the variables MK, C, b5, and E are annotated at the top of
the diagram, Recall that the initial value for Yom is
given as the following:

u, = 0, (96)

u3 = ,025

where the controls are assumed constant throughout the en-
tire time of flight.

NEFF(2) is the point at which A exceeds the present
value of ,0005; and in the calculation of db and dt, recall
that these values are determined by the following:

-1

at " v v v (50)
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Fig. 10, Detailed Flow Chart of the Program
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[ B82(%)
mE

‘ Calcula-
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Fig. 10, Detailed Flow Chart of the Program
(Continued)
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